HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Authors

  • N. Rahimi Department of Applied Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.
  • Y. Ordokhani Department of Applied Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.
Abstract:

Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert computation of fractional differential equations into some algebraic equa- tions. We evaluate application of present method by solving some numerical examples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

hybrid of rationalized haar functions method for solving differential equations of fractional order

abstract. in this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized haar functions. for this purpose, the properties of hybrid of rationalized haar functions are presented. in addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...

full text

a collocation method for solving nonlinear differential equations via hybrid of rationalized haar functions

hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equation...

full text

Hybrid of Rationalized Haar Functions Method for Mixed Hammerstein Integral Equations

A numerical method for solving nonlinear mixed Hammerstein integral equations is presented in this paper. The method is based upon hybrid of rationalized Haar functions approximations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. The Newton-Cotes nodes and Newton-Cotes integration method are then util...

full text

Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method

In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.

full text

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

full text

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2 (Spring)

pages  149- 158

publication date 2016-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023