HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Authors
Abstract:
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert computation of fractional differential equations into some algebraic equa- tions. We evaluate application of present method by solving some numerical examples.
similar resources
hybrid of rationalized haar functions method for solving differential equations of fractional order
abstract. in this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized haar functions. for this purpose, the properties of hybrid of rationalized haar functions are presented. in addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full texta collocation method for solving nonlinear differential equations via hybrid of rationalized haar functions
hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equation...
full textHybrid of Rationalized Haar Functions Method for Mixed Hammerstein Integral Equations
A numerical method for solving nonlinear mixed Hammerstein integral equations is presented in this paper. The method is based upon hybrid of rationalized Haar functions approximations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. The Newton-Cotes nodes and Newton-Cotes integration method are then util...
full textHybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method
In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.
full textTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
full textApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
full textMy Resources
Journal title
volume 6 issue 2 (Spring)
pages 149- 158
publication date 2016-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023